
Simplifying IT Operations and Boosting 
Developer Productivity with Serverless

This eBook is sponsored by AWS. All opinions, writing, and recommendations are Techstrong’s own.



of organizations are 
already leveraging 
serverless technologies.

61% 

56% 
of those said they 
either just invested in 
serverless for the first 
time or will be expanding 
their existing investments 
in the next 24 months. 

One of the primary goals of a DevOps or platform engineering team is to enable developers 
to quickly build and deploy applications with the least amount of friction possible. Achieving 
that goal is often challenging. The underlying IT infrastructure used to run these applications 
historically has been too complex to manage. However, with the rise of serverless compute, 
infrastructure management tasks such as server provisioning, control plane upgrades, patching, 
scaling and maintenance are shifted to cloud providers. This reduces the cognitive load for IT 
teams allowing them to improve the organization’s operational posture and focus on building 
platforms that improve developer productivity.

There are two programming paradigms through which developers can leverage serverless 
compute. The first is based on a functional programming model that makes it easier to embed 
a small piece of code within an application that enables it to invoke IT infrastructure as needed 
dynamically. Once a task is completed, that IT infrastructure automatically spins back down 
to reduce the cost of running an application. This approach reduces the total amount of 
infrastructure required to handle spikes in demand for additional compute resources that might 
be needed to process analytics data, for example.

The second is based on serverless containers, which enable IT teams to build more long-
running or high-load applications that similarly invoke resources on demand. However, instead 
of using functions to build an application, containers provide developers with a familiar 
software artifact for building and deploying longer-running applications.

Source: futurumgroup.com/insights/observability-analyst-insights-on-new-global-study

2 Simplifying IT Operations and Boosting Developer Productivity with Serverless

/


Both allow developers to consume resources on 
a pay-as-you-go basis, ensuring they only pay 
for the resources consumed. This also means 
infrastructure resources are not pre-provisioned, 
avoiding the typical upfront challenges of sizing, 
capacity planning and the need to overprovision 
resources to meet peak capacity workloads and 
future growth needs. 

“The choice of tech stack fundamentally shapes 
the development, deployment, and management 
of applications,” said Paul Nashawaty, practice 
leader and lead principal analyst for The Futurum 
Group, a global technology research and advisory 
firm. “Organizations are looking to accelerate 
cycles from development to release to reduce 
overhead.”

Today, serverless compute adoption is increasing 
rapidly as organizations build and deploy modern 
applications. According to a report from Datadog, 
a provider of an observability platform, more than 
70% of AWS customers in 2023 are using one or 
more serverless platforms. 

Defining the Serverless 
Operating Model

Serverless is an operating model that enables 
developers to build, deploy, and run application 
code on dynamically allocated and managed cloud 
resources without the need to provision, scale or 
maintain cloud servers and infrastructure. The 
cloud provider performs server and underlying 
infrastructure management, patching, upgrades, 
security, and operations to free developers to 
write business logic.

Serverless enables organizations to transition to a 
self-service model for developers, often through 
internal developer portals (IDPs) provided by 

3Simplifying IT Operations and Boosting Developer Productivity with Serverless

https://www.datadoghq.com/state-of-serverless/


platform engineering. In the book Software Architecture Patterns for Serverless Systems, author 
John Gilbert describes how serverless increases development and software delivery velocity:

“Serverless is self-service. We could offload the central teams to the cloud provider. We did not 
need to share resources. Teams could provision resources at will. These resources were highly 
available and highly observable. Teams could get up and running with new technology quickly. 
We could safely go into production without the learning curve.”

Serverless lessens the burden on platform engineering, site reliability engineering (SRE) and 
DevOps teams, which are focused on automating workflows, standardizing and securing 
platforms, providing guardrails and tools to developers, and increasing applications’ resiliency, 
availability and scalability. IT teams spend less time managing the “plumbing” of servers and 
infrastructure and dedicate more cycles to writing code that satisfies business requirements. 
This is why serverless has become a logical option for IT teams, who need to enable building, 
deploying and management of more applications than ever.

There still will be instances in which a DevOps or platform engineering team may need to 
manage the underlying IT platforms. But, with serverless, a much higher percentage of 
applications will take advantage of IT infrastructure that dynamically scales and can be 
managed autonomously, eliminating the need for application development teams to get 
bogged down by the intricacies of infrastructure management.

4 Simplifying IT Operations and Boosting Developer Productivity with Serverless



Building with Serverless Compute 

Applications running on serverless compute platforms can use functions or containers to 
invoke infrastructure resources in any combination as they see fit. 

Serverless functions are typically well suited for event-driven or synchronous web/request-
response applications accessing external services. When an event occurs, serverless compute 
automatically runs the corresponding function. Functions are run without having to provision 
servers and can scale automatically to hundreds of thousands of instances concurrently in 
real time to support high application demands. When instances of that function are no longer 
needed, resources are released until the next event requires instances of that function.

Serverless containers are best suited for applications that need to run continuously or for 
longer periods, consistently get high traffic, or as a first step in a workload migrating to the 
cloud. This is an ideal solution for running containerized applications while getting the benefits 
of serverless compute. Many containerized applications follow the traditional programming 
approach, where applications have long-running processes with a compute layer dedicated 
to the process. Most existing applications follow this model, which many developers are 
familiar with, and this approach is used when you want to run a new or existing service-based 
application developed using a familiar programming approach. 

A list of cloud workloads that work well with serverless 
functions and serverless containers are available in the 
section COMMON SERVERLESS WORKLOADS.

Serverless compute is well-suited to building 
event-driven architectures (EDA), a commonly used 
architectural style in which loosely coupled components 
interact through asynchronous event communication. 
To build EDAs, an event bus is employed to ingest 
events from various sources within an application, 
SaaS applications, cloud services and external services. 
Event buses are particularly effective when applications 
requiring near-real-time or real-time processing of 
events. The event bus ingests events, performs required 
transformations and delivers the event to any of the 
event subscribers. Because events are asynchronous, 
the event producers are unaware of any activity of 
downstream subscribers. This makes them unaware of 
any failures, ensuring high fault tolerance and scalability. 
New event subscribers can be added anytime, making 
serverless very effective at rapidly extending the 
application’s capabilities by delivering new features.

5Simplifying IT Operations and Boosting Developer Productivity with Serverless



Serverless Compute Benefits

Serverless compute helps DevOps and platform teams meet their goals of improving developer 
productivity and operational simplicity. It provides several benefits, including reduced operational 
burden, reliable infrastructure availability, improved security posture, and optimized costs. Let’s look at 
each of these benefits in more depth:

Reduced operational overhead: Serverless compute reduces the need to manage the underlying 
infrastructure, including server provisioning, control plane upgrades, patching, scaling and 
maintenance—which can be time-consuming, resource-intensive, and error-prone for platform teams. 
With serverless compute, platform teams can set guardrails and compliance checks that meet the 
organization’s requirements but rely on the cloud provider’s services with managed operations to take 
advantage of best practices and expertise to improve performance, scalability, availability and security. 
This reduces the cognitive load for platform teams, allowing them to focus on building platforms that 
improve developer productivity and the organization’s operational posture. 

Improved infrastructure availability and scalability: Serverless compute automatically scales resources up 
or down in response to workload changes, ensures infrastructure is immediately available for latency-sensitive 
workloads, and reduces costs by cutting idle capacity. When using serverless functions, a certain number of 
instances can be provisioned based on historical data and traffic predictions, ensuring that they are initialized 
and warm, and able to instantly respond to requests in double-digit milliseconds, minimizing latency and 
mitigating the impact of sudden traffic spikes. Since serverless compute scales automatically and quickly, 

6 Simplifying IT Operations and Boosting Developer Productivity with Serverless



its performance remains consistent as the event frequency increases. Cloud providers distribute serverless 
functions and containers across multiple cloud centers, reducing the risk of downtime and ensuring that 
applications remain accessible even in the face of hardware failures, network issues and other disruptions.

Improved security posture: With serverless, cloud providers take on more of the shared responsibility for 
security by taking on the operational burden on OS patches and runtime updates. Serverless compute also offers 
built-in isolation and ephemeral compute to reduce the attack surface. It simplifies building loosely coupled 
microservices architectures, allowing for resource isolation when compromised to minimize the impact on the 
broader system. Serverless compute typically integrates with security services and observability tools out-of-
the-box to support end-to-end security control across multiple environments and resources throughout the 
development cycle, helping to strengthen overall security posture while accelerating innovation.

Reduced costs: Serverless introduces a significant cost advantage through its pay-for-value pricing model. This 
approach contrasts sharply with traditional compute models that require users to provision and pay for server 
capacity regardless of actual usage. Additionally, serverless compute further reduces the total cost of ownership 
(TCO) by eliminating ongoing infrastructure and software maintenance, streamlining operations and allowing 
development teams to focus on innovation. According to a recent Deloitte report, customers can reduce their 
TCO by 48% when using serverless on AWS. Serverless compute services on AWS integrate with tools that 
provide visibility compute costs allowing development teams to make educated compute choices for a specific 
workload. They also integrate with services that help identify and remediate inefficient configurations, tag 
resources to visualize costs, identify opportunities for savings, and provide granular per workload billing.

7Simplifying IT Operations and Boosting Developer Productivity with Serverless

https://pages.awscloud.com/global-ln-gc-300-deloitte-tco-mod-report-learn.html?trk=d84ead85-30d8-4214-ab6f-df811900221f&sc_channel=el


Common Serverless Workloads

Serverless compute and integration services can be used for several cloud workloads, especially those 
that require on-demand, flexible compute resources where workloads are variable, intermittent or 
unpredictable. The following are some examples of cloud workloads that work well with serverless:

Data Processing: 
Serverless 
compute is 
particularly well 
suited to bursty 
workloads 
like batch and 
real-time data 
processing. 
This includes 
processing large 
amounts of 
data, analytics 
and resource-
intensive ETL 
workloads 
such as map-
reduction 
functionality.

File processing: 
Serverless is 
ideally suited 
for scenarios 
requiring 
the scalable 
processing of 
files upon arrival 
and storage. 
This enables 
efficient data 
processing or 
the use of AI/
ML.

API Backends: 
Serverless 
compute is 
often employed 
for the 
backends of 
web and mobile 
applications and 
communications 
between 
microservices. 
It can handle 
API request 
variability 
by scaling 
up or down 
automatically 
to match the 
request load.

Web 
Applications: 
Serverless 
containers are 
also well-suited 
for serving 
web pages 
or providing 
RESTful APIs, 
where each 
request is 
independent 
and state is 
managed locally.

Automation: 
Scripts run on 
cron jobs or 
in response to 
events for one-
off processing, 
file conversions 
and automated 
system backups 
can be offloaded 
to serverless 
functions. These 
tasks don’t 
require constant 
compute 
resources but 
need to scale on 
demand.

8 Simplifying IT Operations and Boosting Developer Productivity with Serverless



Legacy App 
Modernization: 
Modernizing 
traditional or 
monolithic 
applications 
requires 
breaking them 
into smaller 
microservices. 
These decoupled 
microservices 
can be 
effectively 
developed 
and deployed 
utilizing 
serverless, 
which supports 
incremental 
application 
modernization.

AI/ML: 
Serverless can 
be used to 
process data 
to train Large 
Language 
Models 
(LLMs) and 
Foundational 
Models (FMs). 
Serverless is 
also effective 
for managing 
generative 
AI data and 
streamlining 
responses to 
prompts back to 
the requesting 
user or API.

SaaS 
Integration: 
Serverless 
compute 
effectively 
integrates 
workflow 
automation 
between 
internal 
systems and 
multiple SaaS 
applications.

IoT 
Applications: 
Serverless 
compute is 
well suited 
to processing 
large volumes 
of data from 
IoT devices, 
handling the 
workload 
growth as 
the number 
of devices 
increases.

Event-Driven 
Applications: 
As noted earlier, 
serverless 
compute is 
especially 
effective for 
applications 
that need to 
react to events 
seamlessly in 
near-real time.

9Simplifying IT Operations and Boosting Developer Productivity with Serverless



Summary

The appeal of serverless compute stems from offloading infrastructure management 
to serverless cloud services and enjoying the benefits of scale, agility, security, and cost 
that cloud providers offer. The significance of these benefits cannot be overstated, 
as they enable organizations to become more agile and responsive in today’s rapidly 
evolving competitive marketplace. Serverless compute doesn’t just optimize resources; 
it catalyzes innovation by freeing developers to do what they do best—create. By 
embracing serverless, developers can redirect their focus from the tedium of managing 
servers and infrastructure to the more innovative aspects of rapidly crafting software 
that delivers business value.

Serverless compute technologies allow future-focused organizations to utilize cutting-
edge solutions to run code, manage data, and integrate applications in a way that 
reduces DevOps toil and improves overall developer productivity. These technologies 
feature automatic scaling, built-in high availability, and a pay-for-use billing model to 
increase agility and optimize costs. These technologies also eliminate infrastructure 
management tasks like capacity provisioning and patching so you can focus on writing 
code that serves your customers.

Serverless compute offers a pathway to a more efficient and productive future in 
modern cloud application development. The architectural simplicity of stateless design, 
the agility afforded by event-driven structures and the operational ease of managed 
services create an environment where developers and businesses can rapidly deliver 
value to their customers.

This eBook is sponsored by AWS. All opinions, writing, and recommendations are Techstrong’s own.

10 Simplifying IT Operations and Boosting Developer Productivity with Serverless



AWS Serverless Compute 
Offerings 

AWS Lambda is a serverless compute 
service that runs code as highly 
available, scalable, secure, resilient 
functions without the need to manage 
the underlying infrastructure. It 
abstracts the underlying infrastructure 
and allows builders to focus on 
application development.

AWS pioneered the serverless 
computing space with the launch of 
AWS Lambda in 2014. AWS Lambda 
was a revolutionary idea — run code 
without thinking about servers – and 
it has transformed and accelerated the 
way applications are built. This concept 
has since expanded, with AWS leading 
the charge, to encompass a wide range 
of services that support the serverless 
architecture.

Amazon Elastic Container Service (ECS) 
with AWS Fargate serverless compute 
makes it easy to deploy, manage and 
scale containerized applications while 
removing the burden of provisioning 
and managing servers, capacity 
planning, or evaluating how to isolate 
container workloads for security

11Simplifying IT Operations and Boosting Developer Productivity with Serverless

https://aws.amazon.com/lambda/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/


This eBook is sponsored by AWS. All opinions, writing, and recommendations are Techstrong’s own.


	Common Serverless Workloads 

	Futurm Group Survey Data: 
	Common Serverless Workloads: 


